It was tried to develop the experimental compressibility factor Z of gaseous ammonia in this work in the power series of density 1/V and pressure P respectively at each temperature. The results were obtained as shown in Table 4, from the calculation by the least squares method.

The Z values calculated by the use of the coefficients given in Table 4 agreed with the experimental Z values with the average deviation not exceeding 0.2% approximately up to the saturated vapor

Table 1 Compressibility factor of gaseous ammonia

P (atm)	25°C	50°C	Z = Pv/nRT 75°C	100°C	125°C
		1.0000	1.0000	1.0000	1.0000
0	1.0000	0.9856	1.0000		
2	0.9780	0.9704			
4	0.9546	0.9704	0.9724	0.9787	0.9834
5	0.0200	0.9544	0.7721		
6	0.9308	0.9544			
7	0.9171	0.9372			
8	0.9027 0.8862	0.9372			
9					
9.3	0.8800				
9.5	0.8743				
9.7	0.8656	0,9188	0.9420	0.9560	0.9660
10		0.9188	0.5420	0.7000	
12					
14		0.8793	0.9089	0.9318	0.9477
15	_	0.8503	0,9009	0.7510	
16		0.8592			
18		0.8385			
19		0.8255			
19.5		0.8150			
19.8		0.8027	0.8729	0.9061	0.9286
20			0.8340	0.8788	0.9086
25			0.7925	0.8502	0.8878
30			0.7435	0.8199	0.8662
35			0.7433	0.7882	0.8437
40				0.7540	0.8204
45				0.7174	0.7962
50				0.6764	0.7712
55				0.6290	0.7446
60				0.0270	0.7170
65					0.687
70					0.655
75					0.620
80					0.581
85					0.535
90					0.333
95					0.472

Table 2 Compressibility factor of gaseous ammonia

Compressibility factor of gaseous ammonia									
1/V (mol/l)	25°C	50°C	Z=Pv/nRT 75°C	100°C	125°C				
0	1.0000	1.0000	1.0000	1.0000	1.0000				
0.2	0.9477	0.9595		2.0000	1.0000				
0.25		order more	0.9599	0.9668	0.9725				
0.4	0.8926	0.9195			0.7720				
0.45	0.8715								
0.5	0.8130	0.8992	0.9203	0.9341	0.9453				
0.6	2.00	0.8798		771	0.7133				
0.7	1000	0.8603							
0.75			0.8811	0.9017	0.9183				
0.8		0.8393		0.000	0.7100				
0.85	10 10 10	0.8275							
0.9		0.8140							
0.95		0.7946							
1		0.7545	0.8424	0.8698	0.8916				
1.25			0.8042	0.8384	0.8651				
1.5			0.7664	0.8073	0.8388				
1.75			0.7202	0.7767	0.8128				
2				0.7476	0.7880				
2.25				0.7192	0.7643				
2.5				0.6917	0.7412				
2.75				0.6655	0.7191				
3				0.6405	0.6975				
3.5					0.6560				
4					0.6158				
4.5					0.5791				
5					0.5446				
5.5					0.5123				
6	1/0/16				0.4812				
0800ET	887.1	04.00			-				

pressures.

The coefficients B in Table 4 can be regarded as the experimental second virial coefficients. They were compared with the second virial coefficients given by Keyes¹⁰⁾ and the theoretically calculated ones with the assumption of some adequate potential function on the intermolecular force of ammonia.

 $B\left(\text{cc/g}\right) = 2.4 - (2316/T) \exp\left(7.744 \times 10^4/T^2\right)$ for the second virial coefficient B of ammonia had been presented by Keyes. This is the experimental equation obtained by correlating the experimental P-V-T data of Meyers and Jessup with those of Beattie and Laurence. For the theoretical calculation of the second virial coefficient, it was assumed that the intermolecular force of ammonia might be represented by the Stockmayer potential function. The parameters in the function were taken as follows: r_0 =2.60Å, b_0 =(2 Nr_0 ³/3)=22.12 cc/mol, ε/k =320 K and μ =1.47 debyes. Then, using the

¹⁰⁾ F. G. Keyes, J. Am. Chem. Soc., 60, 1761 (1938)